RNA interference in Caenorhabditis elegans: uptake, mechanism, and regulation.
نویسندگان
چکیده
RNA interference (RNAi) is a powerful research tool that has enabled molecular insights into gene activity, pathway analysis, partial loss-of-function phenotypes, and large-scale genomic discovery of gene function. While RNAi works extremely well in the non-parasitic nematode C. elegans, it is also especially useful in organisms that lack facile genetic analysis. Extensive genetic analysis of the mechanisms, delivery and regulation of RNAi in C. elegans has provided mechanistic and phenomenological insights into why RNAi is so effective in this species. These insights are useful for the testing and development of RNAi in other nematodes, including parasitic nematodes where more effective RNAi would be extremely useful. Here, we review the current advances in C. elegans for RNA delivery methods, regulation of cell autonomous and systemic RNAi phenomena, and implications of enhanced RNAi mutants. These discussions, with a focus on mechanism and cross-species application, provide new perspectives for optimizing RNAi in other species.
منابع مشابه
Ectopic expression of systemic RNA interference defective protein in embryonic stem cells.
RNA interference (RNAi), a post-transcriptional gene silencing mechanism originally described in Caenorhabditis elegans, involves sequence-specific mRNA degradation mediated by double-stranded RNAs (dsRNAs). Passive dsRNA uptake has been uniquely observed in C. elegans due to the expression of systemic RNA interference defective-1 (SID-1). Here we investigated the ability of ectopic SID-1 expre...
متن کاملGenes Required for Systemic RNA Interference in Caenorhabditis elegans
RNA interference (RNAi) in the nematode worm, Caenorhabditis elegans, occurs systemically. Double-stranded RNA (dsRNA) provided in the diet can be absorbed from the gut lumen and distributed throughout the body, triggering RNAi in tissues that are not exposed to the initial dsRNA trigger. This is in marked contrast to other animals, in which RNAi does not spread from targeted tissues to neighbo...
متن کاملSIDT2 mediates gymnosis, the uptake of naked single-stranded oligonucleotides into living cells
Single-stranded oligonucleotides (ssOligos) are efficiently taken up by living cells without the use of transfection reagents. This phenomenon called 'gymnosis' enables the sequence-specific silencing of target genes in various types of cells. Several antisense ssOligos are used for the treatment of human diseases. However, the molecular mechanism underlying the uptake of naked ssOligos into ce...
متن کاملHIF-1 Regulates Iron Homeostasis in Caenorhabditis elegans by Activation and Inhibition of Genes Involved in Iron Uptake and Storage
Caenorhabditis elegans ftn-1 and ftn-2, which encode the iron-storage protein ferritin, are transcriptionally inhibited during iron deficiency in intestine. Intestinal specific transcription is dependent on binding of ELT-2 to GATA binding sites in an iron-dependent enhancer (IDE) located in ftn-1 and ftn-2 promoters, but the mechanism for iron regulation is unknown. Here, we identify HIF-1 (hy...
متن کاملGeneration of RNAi Libraries for High-Throughput Screens
The completion of the genome sequencing for several organisms has created a great demand for genomic tools that can systematically analyze the growing wealth of data. In contrast to the classical reverse genetics approach of creating specific knockout cell lines or animals that is time-consuming and expensive, RNA-mediated interference (RNAi) has emerged as a fast, simple, and cost-effective te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Parasitology
دوره 139 5 شماره
صفحات -
تاریخ انتشار 2012